Orthogonal complex structures on certain Riemannian 6-manifolds∗

نویسندگان

  • V. Apostolov
  • S. Ivanov
چکیده

It is shown that the Hermitian-symmetric space CP1 × CP1 × CP1 and the flag manifold F1,2 endowed with any left invariant metric admit no compatible integrable almost complex structures (even locally) different from the invariant ones. As an application it is proved that any stable harmonic immersion from F1,2 equipped with an invariant metric into an irreducible Hermitian symmetric space of compact type is equivariant. It is also shown thatCP1×CP1×CP1 and F1,2 with its invariant Kähler–Einstein structures are the only compact Kähler–Einstein spin 6-manifolds of non-negative, non-identically vanishing holomorphic sectional curvature that admit another orthogonal complex structure of Kähler type. A necessary and sufficient condition on a compact oriented 6-manifold to admit three mutually commuting almost complex structures is given; it is used to characterize CP1 × CP1 × CP1 and F1,2 as Fano 3-folds admitting three mutually commuting complex structures which satisfy certain compatibility conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Lectures on Riemannian Geometry, Part II: Complex Manifolds

This is a set of introductory lecture notes on the geometry of complex manifolds. It is the second part of the course on Riemannian Geometry given at the MRI Masterclass in Mathematics, Utrecht, 2008. The first part was given by Prof. E. van den Ban, and his lectures notes can be found on the web-site of this course, http://www.math.uu.nl/people/ban/riemgeom2008/riemgeom2008.html. Topics that w...

متن کامل

Clifford Structures on Riemannian Manifolds

We introduce the notion of even Clifford structures on Riemannian manifolds, which for rank r = 2 and r = 3 reduce to almost Hermitian and quaternion-Hermitian structures respectively. We give the complete classification of manifolds carrying parallel rank r even Clifford structures: Kähler, quaternion-Kähler and Riemannian products of quaternion-Kähler manifolds for r = 2, 3 and 4 respectively...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001